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Why Gaussian Process Regression (GPR)?
• Encode simulation knowledge into model via kernel e.g. smoothness or periodicity
• Provides a distribution over simulations i.e. quantifies uncertainty in predictions
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Motivation

Challenge: A GPR model costs O(n3) to fit
• Applications often require GPR for n > 10,000 nodes which is very costly

Solution: Matching nodes and kernel reduces costs to O(n logn)
⋆ Require control over design of experiments

Observation: Derivative information can enhance GPR
• Derivatives available for free e.g. simulation is the numerical solution of a PDE
• Derivatives may be available at a nominal cost e.g. via automatic differentiation
• Derivatives may be the primary information source e.g. GPR for solving non-linear

PDEs [Chen et al., 2021]
New Challenge: With m derivatives, can we improve the O(n3m3) fitting cost?
New Solution: Exploit additional structure to reduce cost to O(m2n logn+m3n)
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Outline and Related Work

1. GPR: follows book on GP for Machine Learning [Rasmussen et al., 2006]
2. Fast GPR: follows fast Bayesian cubature of Hickernell and Jagadeeswaran

• Flavor #1: lattice sequence designs [Jagadeeswaran and Hickernell, 2019]
• Flavor #2: digital sequence designs [Jagadeeswaran and Hickernell, 2022]
• Unifying thesis of Jagadeeswaran Rathinavel [Rathinavel, 2019]
• Adjacent work in a RKHS with lattice sequences [Kaarnioja et al., 2022]
• Application to surrogate for PDE with random coefficients [Sorokin et al., 2023]

3. GPR with derivative information: incorporated gradients in [Solak et al., 2002]
4. Fast GPR with derivative information: our novel contribution!
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Gaussian Process Regression
• Given simulation f : [0,1]s → R
• Assume simulation an instance of a Gaussian process, f ∼ GP (0,K)

• Assume prior mean is zero (not necessary but simplifies presentation)
• Prior covariance kernel K : [0,1]s × [0,1]s → R is symmetric positive definite

K(x,x′) = Cov[f(x),f(x′)]

• Sampling sequence X = (xi)n
i=1 ∈ [0,1]n×s

• Observations y = (yi)n
i=1 = (f(xi)+εi)n

i=1 ∈ Rn×1 with noise ε1, . . . ,εn
IID∼ N (0, ζ)

• kernel (Gram) matrix K = (K(xi,xj))n
i,j=1 ∈ Rn×n

• kernel vector kX(x) = (K(x,xi))n
i=1 ∈ Rn×1

Posterior Mean: mn(x) = k⊺
X(x)(K+ ζI)−1y

Posterior Covariance: Kn(x,x′) = K(x,x′)−k⊺
X(x)(K+ ζI)−1kX(x′)
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Posterior Mean: mn(x) = k⊺
X(x)(K+ ζI)−1y

Posterior Covariance: Kn(x,x′) = K(x,x′)−k⊺
X(x)(K+ ζI)−1kX(x′)

Key is to solve systems of the form

(K+ ζI)a = b

for a ∈ Cn where b ∈ Rn

• (K+ ζI)−1y precomputed during fitting, typically costs O(n3)
• (K+ ζI)−1kX(x′) computed when evaluating uncertainty, typically costs O(n2)

after precomputing factorization of K+ ζI
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Fast Gaussian Process Regression

What? Induce structure in K+ ζI so solving (K+ ζI)a = b for a costs O(n logn)
How? Match quasi-random sequences with structured kernels [Rathinavel, 2019]

• K circulant with lattice sequence X and shift invariant kernel

K(x,x′) = K((x−x′) mod 1)

• K block-Toeplitz with digital sequence X and digitally shift invariant kernel

K(x,x′) = K(x⊖x′)

where ⊖ is XOR (exclusive or) of base 2 digits
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For circulant or block-Toeplitz K we have
• K+ ζI inherits same structure as K
• Eigendecomposition K = VΛV† with V−1 = V† = Hermitian of V
• F(a) := V†a and F−1(b) := Vb can be computed in O(n logn)

• Circulant K means F(a) is the fast Fourier transform of a
• Block-Toeplitz K means F(a) is the fast Walsh-Hadamard transform of a

• First column of V is 1/
√

n

Solve (K+ ζI)a = b for a at cost O(n logn) with

a = F−1
( F(b)

λ+ ζ

)
where λ = diag(Λ) =

√
nF(kX(x1)) and the division is done elementwise
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Derivative Informed Gaussian Process Regression
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Linear functional of a Gaussian process is still a Gaussian process

f (β)(x) := ∂|β|

∂xβ
f(x) := ∂|β|

∂xβ1
1 · · ·∂xβs

s

f(x)

Cov[f (β)(x),f (β′)(x′)] = ∂|β|

∂xβ

∂|β′|

∂xβ′ Cov[f(x),f(x′)] =: K(β,β′)(x,x′)

With m derivative multi-indices β1, . . . ,βm ∈ Ns
0 the kernel (Gram) matrix becomes

K =


K(β1,β1) . . . K(β1,βm)

... . . . ...
K(βm,β1) . . . K(βm,βm)

 ∈ Rnm×nm, K(βk,βl) =
(
K(βk,βl)(xi,xj)

)n

i,j=1

so solving (K+ ζI)a = b for a ∈ Cmn where b ∈ Rmn costs O(m3n3) in general



Background GPR Fast GPR GPR with Derivatives Fast GPR with Derivatives UMBridge Example Future Work References

Fast Gaussian Process Regression with Derivative Information

K(βk,βl) retains structure of K(0,0) e.g. circulant or block Toeplitz
K(β1,β1) . . . K(β1,βm)

... . . . ...
K(βm,β1) . . . K(βm,βm)

 =

V
. . .

V




Λ(β1,β1) . . . Λ(β1,βm)

... . . . ...
Λ(βm,β1) . . . Λ(βm,βm)


︸ ︷︷ ︸

Λ∈Rnm×nm

V†

. . .
V†



Let ⊗ be the Kronecker product so

K+ ζI = (I⊗V)(Λ+ ζI)(I⊗V†)
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K+ ζI = (I⊗V)(Λ+ ζI)(I⊗V†)

Since Λ is a diagonal block (striped) matrix, there is some permutation matrix P with

P⊺(Λ+ ζI)P = Υ+ ζI

where

Υ =

Υ1
. . .

Υn


is block diagonal with Υi,kl = λ

(βk,βl)
i . Then

K+ ζI = (I⊗V)P(Υ+ ζI)P⊺(I⊗V†)
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Cost of solving (K+ ζI)a = b for a with structured K+ ζI

K+ ζI = (I⊗V)P(Υ+ ζI)P⊺(I⊗V†)

Reduce cost from O(m3n3) to O(m2n logn+m3n) with the following algorithm
1. Constructing Υ from eigenvalues λ(βk,βl) = F

(
k

(βk,βl)
X (x1)

)
costs O(m2n logn)

2. b̌ := P⊺(I⊗V†)b can be computed at cost O(mn logn)
3. ǎ := (Υ+ ζI)−1b̌ can be computed at cost O(m3n)
4. a = (I⊗V)Pǎ can be computed at cost O(mn logn)
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Fast Kernel Parameter Optimization

K often depends on parameters θ e.g. scaling factor, lengthscales, noise variance ζ
θ which maximizes the marginal log likelihood is

argmin
θ

L(θ|y) = argmin
θ

[
logdet(K+ ζI)+y⊺(K+ ζI)−1y

]
= argmin

θ

n∑
i=1

[
logdet(Υi + ζI)+ y̌†

i (Υi + ζI)−1y̌i

]
where

y̌ :=

y̌1
...

y̌n

 := P⊺(I⊗V†)y.

Both L(θ|y) and ∂θj
L(θ|y) can still be computed in O(m2n logn+m3n)
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Analytic Donut1 in UMBridge [Seelinger et al., 2023]
IID Points, SE Kernel: No Gradient Information

IID Points with SE Kernel: With Gradient Information

1https://um-bridge-benchmarks.readthedocs.io/en/docs/inverse-benchmarks/
analytic-donut.html

https://um-bridge-benchmarks.readthedocs.io/en/docs/inverse-benchmarks/analytic-donut.html
https://um-bridge-benchmarks.readthedocs.io/en/docs/inverse-benchmarks/analytic-donut.html
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Lattice Points, Matching Kernel: No Gradient Information

Lattice Points, Matching Kernel: With Gradient Information
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Lattice GP with Gradients for Donut Example
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Kernel Parameter Optimization
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Gaussian Process and Gradient Visualization
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Future Work
Theory

• Can we improve the O(m2n logn+m3n) cost by relating λ(β,κ) to λ(β′,κ′)?
• Link with RKHS setting

• General GPR and RKHS kernel interpolation connections in [Kanagawa et al., 2018]
• Optimize weights in [Kaarnioja et al., 2022] with GPR kernel parameter optimization

• Analogous developments for digital sequences
Practical Software

• QMCGenerators.jl2: Quasi-random sequence generators with randomizations
• FastGaussianProcesses.jl3: Fast GPR with derivatives (in development)
• QMCPy4 [Choi et al., 2022]

• Quasi-random sequence generators with randomizations
• Fast GPR cubature [Rathinavel, 2019]

2https://github.com/alegresor/QMCGenerators.jl
3https://github.com/alegresor/FastGaussianProcesses.jl
4https://github.com/QMCSoftware/QMCSoftware

https://github.com/alegresor/QMCGenerators.jl
https://github.com/alegresor/FastGaussianProcesses.jl
https://github.com/QMCSoftware/QMCSoftware
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