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Why Gaussian Process Regression?
• Encode simulation knowledge into model via kernel e.g. smoothness or periodicity
• Gives a distribution over functions i.e. quantifies uncertainty in predictions
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Motivation
Challenge: A GPR model costs O(n3) to fit

• Applications often require GPR for n > 10,000 nodes which is very costly
Solution: Matching nodes and kernel reduces costs to O(n logn)

⋆ Require control over design of experiments (DoE)
Observation: Derivative information can enhance GPR

• Derivatives available for free e.g. simulation is the numerical solution of a PDE
• Derivatives may be available at a nominal cost e.g. via automatic differentiation
• Derivatives may be the primary information source e.g. GPR for solving non-linear

PDEs [Chen et al., 2021]
New Challenge: With m derivatives, can we improve the O(n3m3) fitting cost?

• e.g. for f : [0,1]s → R with access to f and ∇f has m = 1+s

New Solution: Exploit additional structure to reduce cost to O(m2n logn+m3n)
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Outline

1. GPR: follows book on GP for Machine Learning [Rasmussen et al., 2006]
2. Fast GPR: follows fast Bayesian cubature of Hickernell and Jagadeeswaran

• Flavor #1: lattice sequence designs [Jagadeeswaran and Hickernell, 2019]
• Flavor #2: digital sequence designs [Jagadeeswaran and Hickernell, 2022]
• Unifying thesis of Jagadeeswaran Rathinavel [Rathinavel, 2019]
• Adjacent work in a RKHS with lattice sequences [Kaarnioja et al., 2022]
• Application to surrogate of PDE with random coefficients [Sorokin et al., 2023a]

3. GPR with derivative information: incorporated gradients in [Solak et al., 2002]
4. Fast GPR with derivative information: our novel contribution!
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My Related Work Not Mentioned in this Talk

• Articles for MCQMC conference proceedings
• Quasi-Monte Carlo (QMC) Software [Choi et al., 2022]
• Challenges in developing great QMC software [Choi et al., 2023]
• QMC for vector functions of integrals [Sorokin and Rathinavel, 2023]

• Metalearning priors for Bayesian optimization with GPs [Sorokin et al., 2023b]
• Adaptive probability of failure estimation with GPs [Sorokin and Rao, 2023]
• Galactic chemical evolution modeling [Gjergo et al., 2023]
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Gaussian Process Regression
• Given simulation f : [0,1]s → R
• Assume simulation an instance of a Gaussian process, f ∼ GP (0,K)

• Assume prior mean is zero (not necessary but simplifies presentation)
• Prior covariance kernel K : [0,1]s × [0,1]s → R is symmetric positive semi-definite

K(x,x′) = Cov[f(x),f(x′)]

• Sampling sequence X = (xi)n
i=1 ∈ [0,1]n×s

• Observations y = (yi)n
i=1 = (f(xi)+εi)n

i=1 ∈ Rn×1 with noise ε1, . . . ,εn
IID∼ N (0, ζ)

• kernel (Gram) matrix K = (K(xi,xj))n
i,j=1 ∈ Rn×n

• kernel vector kX(x) = (K(x,xi))n
i=1 ∈ Rn×1

Posterior Mean: mn(x) = k⊺
X(x)(K+ ζI)−1y

Posterior Variance: σ2
n(x) = K(x,x)−k⊺

X(x)(K+ ζI)−1kX(x)
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Posterior Mean: mn(x) = k⊺
X(x)(K+ ζI)−1y

Posterior Covariance: σ2
n(x) = K(x,x)−k⊺

X(x)(K+ ζI)−1kX(x)

Key is to solve systems of the form

(K+ ζI)a = b

for a ∈ Cn where b ∈ Rn

• (K+ ζI)−1y precomputed during fitting, typically costs O(n3)
• (K+ ζI)−1kX(x′) computed when evaluating uncertainty, typically costs O(n2)

after precomputing factorization of K+ ζI
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Fast Gaussian Process Regression

What? Induce structure in K+ ζI so solving (K+ ζI)a = b for a costs O(n logn)
How? Match quasi-random sequences with structured kernels [Rathinavel, 2019]

• K circulant with lattice sequence X and shift invariant kernel

K(x,x′) = K((x−x′) mod 1)

• K block-Toeplitz with digital sequence X and digitally shift invariant kernel

K(x,x′) = K(x⊖x′)

where ⊖ is XOR (exclusive or) of base 2 digits
• Details on kernel forms available here
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For circulant or block-Toeplitz K we have
• K+ ζI inherits same structure as K
• Eigendecomposition K = VΛV† with V−1 = V† = Hermitian of V
• F(a) := V†a and F−1(b) := Vb can be computed in O(n logn)

• Circulant K means F(a) is the fast Fourier transform of a
• Block-Toeplitz K means F(a) is the fast Walsh-Hadamard transform of a

• First column of V is 1/
√

n

Solve (K+ ζI)a = b for a at cost O(n logn) with

a = F−1
( F(b)

λ+ ζ

)
where λ = diag(Λ) =

√
nF(kX(x1)) and the division is done elementwise
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Gaussian Kernel with IID Uniform Points
GP#1 Left | GP#2 Right

Top: f . Bottom: df . Left: f at 8 points. Right: f and df at same 4 points.
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Lattice Points with Matching Kernel
GP#1 Left | GP#2 Right

Top: f . Bottom: df . Left: f at 8 points. Right: f and df at same 4 points.
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Digital Net with Matching Kernel
GP#1 Left | GP#2 Right

Top: f . Bottom: d+f . Left: f at 8 points. Right: f and d+f at same 4 points.
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Linear functional of a Gaussian process is still a Gaussian process

f (β)(x) := ∂|β|

∂xβ
f(x) := ∂|β|

∂xβ1
1 · · ·∂xβs

s

f(x)

(Right derivative for digitally shift invariant kernels)

Cov[f (β)(x),f (β′)(x′)] = ∂|β|

∂xβ

∂|β′|

∂xβ′ Cov[f(x),f(x′)] =: K(β,β′)(x,x′)

With m derivative multi-indices β1, . . . ,βm ∈ Ns
0 the kernel (Gram) matrix becomes

K =


K(β1,β1) . . . K(β1,βm)

... . . . ...
K(βm,β1) . . . K(βm,βm)

 ∈ Rnm×nm, K(βk,βl) =
(
K(βk,βl)(xi,xj)

)n

i,j=1

so solving (K+ ζI)a = b for a ∈ Cmn where b ∈ Rmn costs O(m3n3) in general
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New! Fast Gaussian Process Regression with Derivative Information

K(βk,βl) retains structure of K(0,0) e.g. circulant or block Toeplitz
K(β1,β1) . . . K(β1,βm)

... . . . ...
K(βm,β1) . . . K(βm,βm)

 =

V
. . .

V




Λ(β1,β1) . . . Λ(β1,βm)

... . . . ...
Λ(βm,β1) . . . Λ(βm,βm)


︸ ︷︷ ︸

Λ∈Rnm×nm

V†

. . .
V†



Let ⊗ be the Kronecker product so

K+ ζI = (I⊗V)(Λ+ ζI)(I⊗V†)
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K+ ζI = (I⊗V)(Λ+ ζI)(I⊗V†)

Since Λ is a diagonal block (striped) matrix, there is some permutation matrix P with

P⊺(Λ+ ζI)P = Υ+ ζI

where

Υ =

Υ1
. . .

Υn


is block diagonal with Υi,kl = λ

(βk,βl)
i . Then

K+ ζI = (I⊗V)P(Υ+ ζI)P⊺(I⊗V†)
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Cost of solving (K+ ζI)a = b for a with structured K+ ζI

K+ ζI = (I⊗V)P(Υ+ ζI)P⊺(I⊗V†)

Reduce cost from O(m3n3) to O(m2n logn+m3n) with the following algorithm
1. Constructing Υ from eigenvalues λ(βk,βl) = F

(
k

(βk,βl)
X (x1)

)
costs O(m2n logn)

2. b̌ := P⊺(I⊗V†)b can be computed at cost O(mn logn)
3. ǎ := (Υ+ ζI)−1b̌ can be computed at cost O(m3n)
4. a = (I⊗V)Pǎ can be computed at cost O(mn logn)
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Fast Kernel Parameter Optimization

K often depends on parameters θ e.g. scaling factor, lengthscales, noise variance ζ
θ which maximizes the marginal log likelihood is

argmin
θ

L(θ|y) = argmin
θ

[
logdet(K+ ζI)+y⊺(K+ ζI)−1y

]
= argmin

θ

n∑
i=1

[
logdet(Υi + ζI)+ y̌†

i (Υi + ζI)−1y̌i

]
where

y̌ :=

y̌1
...

y̌n

 := P⊺(I⊗V†)y.

Both L(θ|y) and ∂θj
L(θ|y) can still be computed in O(m2n logn+m3n)



Background GPR Fast GPR GPR with Derivatives Fast GPR with Derivatives Example Next Steps References Kernels

Analytic Donut1 in UMBridge [Seelinger et al., 2023]
IID Points, Gaussian Kernel: No Gradient Information

IID Points with Gaussian Kernel: With Gradient Information

1https://um-bridge-benchmarks.readthedocs.io/en/docs/inverse-benchmarks/
analytic-donut.html

https://um-bridge-benchmarks.readthedocs.io/en/docs/inverse-benchmarks/analytic-donut.html
https://um-bridge-benchmarks.readthedocs.io/en/docs/inverse-benchmarks/analytic-donut.html
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Lattice Points, Matching Kernel: No Gradient Information

Lattice Points, Matching Kernel: With Gradient Information
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Digital Net, Matching Kernel: No Gradient Information

Digital Net, Matching Kernel: With Right Gradient Information
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Full Lattice GP with Gradients for Donut Example
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Kernel Parameter Optimization
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Gaussian Process and Gradient Visualization
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Theoretical Next Steps
Efficient updates and error quantification when adding new points

Fast GP with mix of lattice / digital net and unstructured points
• Unstructured points on boundary of [0,1]s

• Unstructured refinement sampling after initial structured sampling
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Practical Next Steps
Available software

• QMCGenerators.jl2: Quasi-random sequence generators with randomizations
• FastGaussianProcesses.jl3: Fast GPR with derivatives (in development)
• QMCPy4 [Choi et al., 2022]: Quasi-Monte Carlo Software

• Quasi-random sequence generators with randomizations
• Fast GPR cubature [Rathinavel, 2019]

SCGSR program with Pieterjan Robbe at Sandia National Laboratory?
• Operator learning for PDE solver with high dimensional output (no derivatives)
• Small number of input parameters, numerical solver outputs PDE solution function
• Extend software to support HPC systems via CPU / GPU

2https://github.com/alegresor/QMCGenerators.jl
3https://github.com/alegresor/FastGaussianProcesses.jl
4https://github.com/QMCSoftware/QMCSoftware

https://github.com/alegresor/QMCGenerators.jl
https://github.com/alegresor/FastGaussianProcesses.jl
https://github.com/QMCSoftware/QMCSoftware
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Long Term Next Steps

Fast(er) GPR without DoE via inducing points [Snelson and Ghahramani, 2005]
• Typical cost of GPR with p unstructured data points is O(p3)
• Induce onto n unstructured points at cost O(p2n+pn3)
• Induce onto n lattice / digital net points at cost O(p2n+n3 +pn logn)
• Induce onto mix of lattice / digital net and unstructured samples?
• Induce derivative observations?

Application to learning nonlinear PDEs with GPs [Chen et al., 2021]
• No simulation. Instead, optimize derivative outputs to fit PDE
• Lattice / digital net points in (0,1)s with unstructured sampling of BCs
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Inducing Points Sketch

Green: function. Blue: Standard GP. Red: GP with Vertical Line Inducing Points.
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Weighted Tensor Product Kernels

Kα(x,y) = γ
∑

u⊆{1,...,s}
ηu

∏
j∈u

Kαj (xj ,yj)

• Used in QMC literature e.g. [Kaarnioja et al., 2022]
• Optimizing kernel parameters equivalent to optimizing weights (ηu)u⊆{1,...,s}
• Costs O(2s) to evaluate

Product Weight Kernels require ηu =
∏

j∈u η{j} for ∅ ̸= u ⊆ {1, . . . ,s} and η∅ = 1

Kα(x,y) = γ
∏

j∈{1,...,s}

[
1+η{j}Kαj (xj ,yj)

]

• Cost O(s) to evaluate
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Fourier Series and Shift Invariant Kernels for Lattices

Let {x−y} = (x−y) mod 1 and let Bi denote th ith Bernoulli polynomial.

K̊α(x,y) =
∑

k∈Z0

e2πik(x−y)

k2α
= (−1)α+1(2π)2α

(2α)!
B2α({x−y}) = K̊α({x−y})

is the kernel of Sobolev RKHS H̊α with α ∈ N and

⟨f,g⟩ = (−1)α(2π)−2α
∫ 1

0
f (α)(x)g(α)(x)dx.

[Kanagawa et al., 2018] discusses GPR and RKHS kernel interpolation connections
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New! Walsh Series and Digitally Shift Invariant Kernels for Digital Nets
For α ≥ 2 the Sobolev RKHS Hα with inner product

⟨f,g⟩α =
α−1∑
β=1

∫ 1

0
f (β)(x)dx

∫ 1

0
g(β)(x)dx+

∫ 1

0
f (α)(x)g(α)(x)dx

has kernel

Kα(x,y) =
α−1∑
β=1

Bβ(x)Bβ(y)
(β!)2 +

K̊({x−y})︷ ︸︸ ︷
(−1)α+1 B2α({x−y})

(2α)!
.

[Dick, 2008, 2009] can be used to show Hα ⊂ H̃α where H̃α is an RKHS with kernel

K̃α(x,y) =
∑
k∈N

walk(x⊖y)
bµα(k) = K̃α(x⊖y).

Explicit forms for b = 2,α ∈ {2,3,4}. For α = 1 see [Dick and Pillichshammer, 2005].
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