
Fourier Series and Spaces Walsh Series and Spaces Research Connections References

Walsh Functions and Spaces
Computational Mathematics and Statistics Seminar

Multiscale and Computation Seminar

Aleksei G. Sorokin

Illinois Institute of Technology, Department of Applied Mathematics

April 17, 2024



Fourier Series and Spaces Walsh Series and Spaces Research Connections References

Fourier Series

When f : [0,1] → R has an absolutely convergent Fourier series

f(x) =
∑
k∈Z

f̂(k)e2πikx, f̂(k) =
∫ 1

0
f(x)e−2πikxdx.

When f (α) has an absolutely convergent Fourier series for some α ∈ N0 and f (β)

periodic for all β ∈ {1, . . . ,α −1}

f (α)(x) =
∑
k∈Z

f̂ (α)(k)e2πikx, f̂ (α)(k) = (2πik)αf̂(k).
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Fourier Spaces

Let {x−y} = (x−y) mod 1 and let Bi denote the ith Bernoulli polynomial.

K̊α(x,y) =
∑

k∈Z\{0}

e2πik(x−y)

k2α
= (−1)α+1(2π)2α

(2α)!
B2α({x−y}) = K̊α({x−y}),

is the kernel of Sobolev RKHS H̊
α with α ∈ N and

⟨f,g⟩̊α = (−1)α(2π)−2α
∫ 1

0
f (α)(x)g(α)(x)dx.
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K̊α(x) = (−1)α+1(2π)2α

(2α)! B2α(x)
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Digitwise Operations
Prime base b ≥ 2 expansion of x ∈ [0,1) is

x = .x1x2x3 · · ·b =
∑
ℓ∈N

xℓb
−ℓ, e.g. .375 = .0112,

with digitwise addition (digitwise exclusive or in base b = 2)

x⊕y :=
∑
ℓ∈N

((xℓ +yℓ) mod b)b−ℓ, e.g. .375⊕.625 = .0112 ⊕.1012 = .1102 = .75.

Similarly for k ∈ N0

k = · · ·k2k1k0.0b =
∑

ℓ∈N0

kℓb
ℓ, e.g. 5 = 1012,

k ⊕h :=
∑

ℓ∈N0

((kℓ +hℓ) mod b)bℓ, e.g. 5⊕6 = 1012 ⊕1102 = 0112 = 3.
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Walsh Functions

Introduced for base b = 2 in [Walsh, 1923] with important results in [Fine, 1949].
Generalized to finite abelian group with a bijection in [Larcher et al., 1996].

For k ∈ N0 with k = (k0,k1, . . .) and x ∈ [0,1) with x = (x1,x2, . . .),

walk(x) = e2πi/b
∑∞

ℓ=0 kℓxℓ+1 = e2πi/bk.x

e.g. for b = 2, wal6(.75) = (−1)(0,1,1).(1,1,0) = −1.

For any fixed b, {walk : k ∈ N0} is a complete orthonormal system in L2([0,1)).
Notice similarity to complex exponential basis

{
e2πikx : k ∈ Z

}
for Fourier series.
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b = 2 Walsh Functions walk(x) = (−1)
∑

ℓ∈N0 kℓxℓ+1
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Walsh Function Properties
For any x,y ∈ [0,1) and k,h ∈ N0 and f ∈ L2([0,1))

1. walk(x)walh(x) = walk⊕h(x) and walk(x)walk(y) = walk(x⊕y)
2. ∫ 1

0
walk(x)dx =

{
1, k = 0
0, k > 0

3. ∫ 1

0
f(σ)dσ =

∫ 1

0
f(x⊕σ)dσ

4.
ba−1∑
k=0

walk(x) =
{

ba, a < I(x)−1
0, otherwise

where I(x) = −⌊logb(x)⌋ is the index first non-zero digit in the base b expansion
e.g. with b = 2 then I(.375) = I(.0112) = 2.
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Weight Function
Write k ∈ N as

k =
#k∑
ℓ=1

kaℓ
baℓ

with a1 > · · · > a#k ≥ 0 and kaℓ
∈ {1, . . . , b−1}.

Weight function for α ∈ N0 has

µα(k) =
min(α,#k)∑

ℓ=1
(aℓ +1)

with µ0(k) = µα(0) = 0. µ sums indices of non-zero digits. For example, with b = 2

k = 13 = 11012 has (a1,a2,a3) = (3,2,0)

µ1(k) = (3+1), µ2(k) = (3+1)+(2+1), µ3(k) = (3+1)+(2+1)+(0+1) = µ4(k) = . . . .
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Walsh Series of Smooth Functions
For α ≥ 2 the Sobolev RKHS Hα with inner product

⟨f,g⟩α =
α−1∑
β=1

∫ 1

0
f (β)(x)dx

∫ 1

0
g(β)(x)dx+

∫ 1

0
f (α)(x)g(α)(x)dx

has kernel

Kα(x,y) =
α−1∑
β=1

Bβ(x)Bβ(y)
(β!)2 +

K̊α({x−y})/(2π)2α︷ ︸︸ ︷
(−1)α+1 B2α({x−y})

(2α)!
.

[Dick, 2008, 2009] show that if f ∈ Hα then for f̂(k) =
∫ 1

0 f(x)walk(x)dx we have

sup
k∈N0

∣∣∣f̂(k)
∣∣∣bµα(k) < ∞ i.e. ∃Cf,α > 0 s.t.

∣∣∣f̂(k)
∣∣∣ ≤ Cf,α

bµα(k) .

For the α = 1 case see [Dick and Pillichshammer, 2005].
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Digitally Shift Invariant Walsh Kernel
Hα ⊂ H̃α where H̃α is an RKHS with kernel

K̃α(x,y) =
∑
k∈N

walk(x⊖y)
bµα(k) = K̃α(x⊖y).

Below K̃α(x) with b = 2 is shown. Discontinuities at {2−a : a ∈ N} among others.
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Research Connections for Multivariate Functions
Kernel matrix K = (K(xt,xs))N

t,s=1 of pairwise evaluations at {xt}N
t=1 ⊂ [0,1)d is:

• Generally dense and unstructured for Kγ
α(x,y) :=

∏d
j=1

[
1+γjKαj (xj ,yj)

]
.

• circulant for K̊
γ
α(x,y) :=

∏d
j=1

[
1+γjK̊αj ({xj −yj})

]
, lattice {xt}N

t=1.

• block Toeplitz for K̃γ
α(x,y) :=

∏d
j=1

[
1+γjK̃αj (xj ⊖yj)

]
, digital net {xt}N

t=1.
Kriging: Generally costs O(N3). Costs O(N logN) when K circulant or block Toeplitz.
Quasi Monte Carlo Absolute Error∣∣∣∣∣

∫
[0,1)d

f(x)dx− 1
N

N∑
t=1

f(xt)
∣∣∣∣∣

• is O(N−α+δ) for f in RKHS of K̊
γ
α and certain lattice sequence {xt}N

t=1.
• is O(N−α+δ) for f in RKHS of Kγ

α using certain digital sequences {xt}N
t=1.

δ > 0 arbitrary. Convergence rates independent of d when γ chosen judiciously.
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Low Discrepancy (Quasi-Random) Point Sets
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