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Solving PDEs with Machine Learning

Example PDE: eu(x) [ux(x)vx(x)+vxx(x)] = −1, v(0) = 0 = v(1)

• Try to approximate solution v when input u either deterministic or random
• ML approaches to approximate u 7→ v include neural networks and kernel methods
• PDE may be non-linear and high dimensional
• Physics informed ML does not rely on reference solver data e.g. finite difference
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Neural Networks and Kernel Methods for Solving PDEs

PDE with deterministic coefficients PDE with unknown coefficients
reference solver physics informed reference solver physics informed

neural networks [Abiodun et al., 2018] [Raissi et al., 2019] [Lu et al., 2021] [Wang et al., 2021]

kernel methods [Williams and Rasmussen, 2006] [Chen et al., 2021] [Batlle et al., 2024] proposed solution

• Physics Informed Neural Networks (PINN) [Raissi et al., 2019]
Loss function of PDE equations using automatic differentiation

• Deep Operator Networks (DeepONets) [Lu et al., 2021]
Combine network for x with network for u [Wang et al., 2021]

scalability convergence guarantees error rates interpretability
neural networks + + ± −
kernel methods ± + + +
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Operator Learning Framework

eu(x) [ux(x)vx(x)+vxx(x)] = −1, v(0) = 0 = v(1)

U V

Rn Rm

G†

ϕ φ

Diagram and
framework of
[Batlle et al.,
2024]

• u ∈ U has known distribution and ux available
e.g. a Gaussian process

• v ∈ V to be solved for
• Goal: Find operator G†(u) = v

• ϕ(u) = (ϕ1(u), . . . ,ϕn(u)) linear samples of u e.g.
ϕ(u) = (u(x1),u(x2), . . . ,ux(x1),ux(x2), . . .)

• φ(v) = (φ1(v), . . . ,φm(u)) linear sampler of v e.g.
φ(u) = (v(0),v(1),vx(x1),vx(x2), . . . ,vxx(x1),vxx(x2), . . .)
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Operator Learning Framework Continued

eu(x) [ux(x)vx(x)+vxx(x)] = −1, v(0) = 0 = v(1)

U V

Rn Rm

G†

ψ ϕ
f †

χ φ

• ψ(ϕ(u)) = û approximates u from samples ϕ(u) ∈ Rn

• χ(φ(v)) = v̂ approximations v from samples χ(v) ∈ Rm

• f †(ϕ(u)) ≈ φ(v) approximates samples of v from samples of u
• G† ≈ χ◦f † ◦ϕ

1. Samples u to get ϕ(u)
2. Approximates v samples φ(v) by f†(ϕ(u))
3. Reconstructs approximate v as χ(f†(ϕ(u))) from samples
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Kernel Methods Idea

U V

Rn Rm

G†

ψ ϕ
f †

χ φ

Use RKHS kernel interpolant for ψ, χ, and f †

• ψ rarely used to reconstruct input u
• f † a vector valued kernel interpolant
• χ an optimal reconstruction map in RKHS
• May reinterpret kernel interpolants as Gaussian processes

GP GP derivative
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Physics Informed Kernel Methods

1. Pick a realization u ∈ U
2. Sample ϕ(u) ∈ Rn

3. Optimize unknown φ(v) ∈ Rm to minimize RKHS interpolant norm satisfying PDE
4. Repeat 1. to 3. for many realizations of u1, . . . ,uN

5. Build kernel interpolant f † from {ϕ(ui)}N
i=1 and optimized {φ(vi)}N

i=1

6. Use mapping f † and optimal recovery map χ on unseen ϕ(u∗)
Connections to Existing Kernel Methods for PDEs

• [Chen et al., 2021] is 1. to 3. for deterministic u
• [Batlle et al., 2024] is 5. and 6. for unknown u when reference solver available

Idea: Use physics informed kernel method for deterministic u as the reference solver
in kernel operator learning framework
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Train 1D Elliptic PDE

eu(x) [ux(x)vx(x)+vxx(x)] = −1, v(0) = 0 = v(1)
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Test 1D Elliptic PDE

eu(x) [ux(x)vx(x)+vxx(x)] = −1, v(0) = 0 = v(1)
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Radiative Transfer Equation 1D
Top Row Train. Bottom Row Test

svx(x,s)+kv(x,s) = 0, v(0,s > 0) = 1, v(1,s < 0) = 0, scalar k unknown



Background Operator Learning Framework Kernel Methods for PDEs Experiments Fast Kernel Methods Discussion References

Heat Flux from Radiative Transfer Equation 1D
Left Train. Right Test

svx(x,s)+κv(x,s) = 0, v(0,s > 0) = 1, v(1,s < 0) = 0, scalar k unknown
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Fast Kernel Methods via Structured Gram Matrices
• RKHS kernel K : Rd ×Rd → R yields Gram matrix K = (K(xi,xj))n

i,j=1 ∈ Rn×n

• Kernel interpolant fit by solving linear system Ka= b for a
• Choose K and {xi}n

i=1 to induce structure in K allowing faster solve Ka= b

samples {xi}n
i=1 kernel K Gram matrix K Solving Ka= b

unstructured general dense unstructured O(n3)
regular grid stationary block Circulant O((n logn)d)

lattice sequence shift-invariant circulant O(n logn)
digital sequence digitally shift invariant block Toeplitz O(n logn)

My PhD research extends fast kernel methods with lattice and digital sequence
[Jagadeeswaran and Hickernell, 2019, 2022] to accommodate derivative information
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Fast Quasi-Monte Carlo Kernel Interpolation
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Discussion

Observations
• Proposed method simply couples existing kernel methods for

1. Solving PDEs with deterministic coefficients [Chen et al., 2021]
2. Operator learning when a reference solver is available [Batlle et al., 2024]

• Mathematica supports symbolic linear functionals e.g. derivatives and integrals
• Symbolic computations can sometimes be prohibitively slow
• Potential opportunity to expand kernel methods to weak formulations

Future Work
• Derive convergence guarantees and rates
• Implement fast kernel methods for this setting
• Apply to challenging PDEs in high dimensions
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